A dual scale volume-of-fluid approach for modeling turbulent phase interface dynamics
نویسنده
چکیده
In this report, a dual-scale modeling approach is presented to describe turbulent twophase interface dynamics in a Large Eddy Simulation spatial filtering context. To close the unclosed terms related to the phase interface arising from filtering the Navier-Stokes equation, a resolved realization of the phase interface is explicitly filtered. This resolved realization is maintained on a high resolution over-set mesh using a Refined Local Surface Grid approach employing an un-split, geometric, bounded, and conservative Volume of Fluid method. While the required model for the resolved realization of the interface advection velocity includes the effects of sub-filter surface tension, sub-filter shear, and turbulent eddies, the focus in this report will be on advection by sub-filter turbulent eddies. Examples of a two-dimensional Rayleigh-Taylor instability and the motion of an interface in homogeneous isotropic turbulence are presented.
منابع مشابه
Numerical simulation of the fluid dynamics in a 3D spherical model of partially liquefied vitreous due to eye movements under planar interface conditions
Partially liquefied vitreous humor is a common physical and biochemical degenerative change in vitreous body which the liquid component gets separated from collagen fiber network and leads to form a region of liquefaction. The main objective of this research is to investigate how the oscillatory motions influence flow dynamics of partial vitreous liquefaction (PVL). So far computational fluid d...
متن کاملMULTI PHASE COMPUTATIONAL FLUID DYNAMICS MODELING OF CAVITATING FLOWS OVER AXISYMMETRIC HEAD-FORMS
In the present paper, partial cavitation over various head-forms was studied numerically to predict the shape of the cavity. Navier-Stokes equations in addition to an advection equation for vapor volume fraction were solved. Mass transfer between the phases was modeled by a sink term in vapor equation in the numerical analysis for different geometries in wide range of cavitation numbers. The r...
متن کاملMultiphase flow and tromp curve simulation of dense medium cyclones using Computational Fluid Dynamics
Dense Medium Cyclone is a high capacity device that is widely used in coal preparation. It is simple in design but the swirling turbulent flow, the presence of medium and coal with different density and size fraction and the presence of the air-core make the flow pattern in DMCs complex. In this article the flow pattern simulation of DMC is performed with computational fluid dynamics and Fluent...
متن کاملComputational fluid dynamics study and GA modeling approach of the bend angle effect on thermal-hydraulic characteristics in zigzag channels
In the study, the thermal-hydraulic performance of the zigzag channels with circular cross-section was analyzed by Computational Fluid Dynamics (CFD). The standard K-Ꜫ turbulent scalable wall functions were used for modeling. The wall temperature was assumed constant 353 K and water was used as the working fluid. The zigzag serpentine channels with bend angles of 5 - 45° were studied for turbul...
متن کاملA Large Eddy Simulation Subgrid Model for Turbulent Phase Interface Dynamics
In this paper we report on the outline of a Large Eddy Simulation subgrid model for liquid/gas phase interface dynamics. A key feature of the proposed model is to take the subgrid phase interface dynamics fully into account by employing a dual-scale approach. Instead of modeling the LES subgrid phase interface geometry, we fully resolve it on an auxillary grid using the Refined Level Set Grid a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014